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Phase behavior of a model of colloidal particles with a fluctuating internal state

Richard P. Sear*
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom

~Received 14 February 2000!

Colloidal particles are not simple rigid particles; in general an isolated particle is a system with many
degrees of freedom in its own right, e.g., the counterions around a charged colloidal particle. The behavior of
model colloidal particles, with a simple phenomenological model to account for these degrees of freedom, is
studied. It is found that the interaction between the particles is not pairwise additive. It is even possible that the
interaction between a triplet of particles is attractive while the pair interaction is repulsive. When this is so the
liquid phase is either stable only in a small region of the phase diagram or absent altogether.

PACS number~s!: 82.70.Dd, 78.30.Cp
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I. INTRODUCTION

Theories for the behavior of systems of particles usua
apply to a model for the interaction between particles
which the energy of interaction is pairwise additive. T
Hamiltonian is of the form

H~rN!5 (
i , j 51

N

8 u~r i j !, ~1!

a sum of spherically symmetric pairwise-additive potenti
u(r ). rN denotes the coordinates of theN particles andr i j is
the scalar separation of particlesi andj. But experiments are
almost never on simple rigid particles. For example, the p
ticles in a colloidal suspension are not simple rigid particl
Generally they are stabilized in the suspension either by
ing charged, in which case they are surrounded by a clou
counterions, or by having short polymers grafted to th
surface@1#. In either case we have not a rigid particle bu
system with many degrees of freedom, e.g., the position
the counterions, which fluctuate. Each particle is a syst
with a free energy, susceptibilities, etc., in its own rig
Here we will treat systems of particles, each of which is
weakly fluctuating statistical mechanical system in its o
right. Each particle will have a Landau-like free ener
which couples to that of neighboring particles. We will u
the simplest possible form of this free energy, and sh
exactly and analytically that it leads to many-body attra
tions. These cannot be expressed as a Hamiltonian with
form of Eq. ~1!.

This work is partly inspired by recent experiments
highly charged colloidal particles under conditions of min
mal amounts of added salt. The potential of mean force
tween anisolatedpair of colloidal particles with minimal sal
concentrations has been measured and is purely repu
@2#. Yet the particles form crystallites which appear to
metastable at close to zero osmotic pressure@3#; this is very
hard to explain unless there is some sort of cohesive att
tion between the particles in the crystallites. It does not se
possible to explain these findings with a Hamiltonian wh
depends only on the coordinates of the colloidal particles
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has the conventional form of Eq.~1!. Here we develop a
simple phenomenological theory for colloidal particl
which treats each particle as a fluctuating statistical mech
cal system. See Refs.@4–11# for recent theoretical work on
understanding this behavior starting from a Hamiltoni
which explicitly includes the counterions and the elect
static interactions. The theory is phenomenological as
simply assumethat the state of a particle can be described
a single coarse-grained scalar variable; we do not derive
This scalar variable fluctuates and these fluctuations are
turbed by the presence of another particle nearby. The
turbations due to the particles which surround any given p
ticle add up, meaning that the state of a particle changes
the number of its neighbors. Essentially, the more partic
that surround any given particle, the more the particle’s fl
tuations are biased towards values that minimize the inte
tion free energy and so the more attractive is the interac
between the given particle and all the surrounding partic
It is possible for two of our model particles to repel ea
other but for particles in clusters of more than two partic
to attract each other. This can lead to coexistence betwe
dilute fluid and a dense crystal phase even when a pai
particles repel each other. We will show that generally if t
fluctuations can be described by a scalar variable, then
interaction between a pair of particles within a cluster
several particles is more attractive than between an isol
pair.

In the next section we define our model. In Sec. III w
show that it exactly corresponds to a potential between st
tureless particle which contains both pair and triplet term
Then in Sec. IV we apply a perturbation theory to obtain
approximation to the free energy of both the fluid and cr
talline phases, which is accurate for long-ranged interacti
between the fluctuating internal states. We show results
the phase behavior and for the zero-wave-vector struc
factor in Sec. V. Section VI is the conclusion.

II. MODEL

Our model particles have an internal state specified b
single scalar variables. The value of thes variable for a
single isolated particle fluctuates weakly. Essentially,
view it as a coarse-grained variable@12# obtained by averag-
ing over some large number of degrees of freedom ass
2501 ©2000 The American Physical Society
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2502 PRE 62RICHARD P. SEAR
ated with each particle. An outline of how our mesosco
Hamiltonian may be derived from a microscopic one is giv
in the Appendix. The interaction between a pair of the p
ticles depends on the value of this variable. Thus, when
particles interact the mean values of thes variables on the
two particles will change; the particles ‘‘polarize’’ eac
other. The interaction between them biases both inte
variables towards values for which their interaction free
ergy is low. We included polarize in quotation marks b
cause our model is phenomenological not electrostatic;
Ref. @8# which considers the polarization of one charged c
loidal particle by another.

The effective HamiltonianH of the system of particles
has two parts: one part independent of thes variables,U, and
the other the free energy of the particles as a function of
N internal variables,FN ,

H~rN,sN!5U~rN!1FN~rN,sN!, ~2!

whererN andsN symbolize the center-of-mass and intern
variable coordinates, respectively, of allN particles.

We need not specifyU beyond saying that it should b
such that the system has a well-defined thermodynamic l
@13#. Later on we will setU to be the sum of hard-spher
repulsions between pairs of the particles,

U~rN!5
1

2 (
i , j 51

N

8 uhs~r i j !, ~3!

whereuhs is the hard-sphere potential:

uhs~r !5H 0, r>s,

`, r ,s.
~4!

r is the separation of the centers of the interacting partic
The prime to the sum in Eq.~3! means that the sum is onl
over those terms for whichj Þ i . Note that not all the double
and triple sums below will have a prime; in the unprim
ones terms with equal subscripts are summed over.

Each particle has a dimensionless internal variables.
Now, we assume that the coupling between these varia
on different particles is pairwise additive and spherica
symmetric. Then the free energyFN is

FN~rN,sN!5(
i 51

N

f (1)~si !1
1

2 (
i , j 51

N

8 f (2)~si ,sj ,r i j !. ~5!

f (1) is the free energy of a single isolated particle and i
function only of itss variable. f (2) is the difference in free
energy between an isolated pair of particles and two isola
particles, and is a function only of the twos variables and the
magnitude of the separation of the two particles. An isola
particle is a particle far from any other particle; an isolat
pair of particles is a pair of particles far from any oth
particle. For weak fluctuationss is small, so we Taylor ex-
pand f (1) and f (2),

f (1)~s!5as21a3s31a4s41•••, ~6!

where the linear term is missing as the variables is defined
so that if a particle is isolated, its mean value is zero, an
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f (2)~s,s8,r !5f0~r !1f1~r !~s1s8!1f2~r !~s21s82!

1f2
x~r !ss81•••. ~7!

The coefficientsa, a3, etc., are derivatives off (1),

a5
1

2

d2f (1)~s!

ds2
, ~8!

and a3 is 1/6 times the third derivative, etc. Similarly, th
coefficientsf0(r ), f1(r ), etc., are derivatives off (2) at a
fixed separation of the particles.f0 is the zeroth derivative,
f1 is the first derivative with respect to either of the twos
variables,

f1~r !5S ] f (2)~s,s8,r !

]s D
s8,r

, ~9!

and similarly for the higher derivativesf2, etc.
Our Taylor expansions are quite general for partic

which have a state which can be described by a sin
weakly fluctuating scalar variable and in which the intera
tion between two particles can be expressed in terms of
variable. If the variable is a vector or a tensor and no
scalar, then clearly there will be expressions analogous
that of Eq. ~5! but vectorial or tensorial variables will in
general lead to results very different from those found he

We truncate the Taylor expansions, Eqs.~6! and~7!, after
their lowest nontrivial terms and substitute the resulting
pansions into Eq.~5! to obtain

FN~rN,sN!5(
i 51

N

asi
21

1

2 (
i , j 51

N

8 @f0~r i j !1f1~r i j !~si1sj !#.

~10!

The inverse susceptibilitya and the zeroth,f0, and first,f1,
order coefficients all have the dimensions of energy. So
our Hamiltonian, Eqs.~2! and ~10!, to describe a system o
particles accurately we require~1! that the fluctuations ins of
an isolated particle be sufficiently small that the higher or
terms in f (1) may be neglected,~2! that the interactions be
tween the particles can be described as a sum over inte
tions of pairs,~3! that this interaction is spherically symme
ric, ~4! that this interaction can be accurately described b
function of this single scalar, coarse-grained, variable, a
~5! that the interactions between fluctuations are sufficien
weak that the higher terms inf (1) and f (2) are small.

For noninteracting particles the second sum of Eq.~10!
may be neglected andFN is just a sum of independent qua
dratic terms. The distribution of thes’s is then Gaussian
which is correct for small fluctuations of a coarse-grain
variable@12,14#. a is the inverse susceptibility of an isolate
particle; the smaller it is, the larger are the fluctuations. T
interaction between a pair of particles is expressed as a T
lor expansion in the twos’s truncated after the linear term
One particle feels an interaction due to another nearby
ticle, which couples to its order parameters with a strength
f1(r ). The s dependence of the free energy of Eq.~10! is
what we would expect if the particles were weakly intera
ing, weakly fluctuating thermodynamic systems.
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III. EXACT THEORY

We start from the configurational integralZN for N par-
ticles in a volumeV and at a temperatureT,

ZN5E drNdsNexp@2H~rN,sN!/kT#, ~11!

with the Hamiltonian given by Eqs.~2! and~10!. The Helm-
holtz free energyA is then

A52kTln~ZNLN/N! !, ~12!

whereL derives from the integration over the momenta. U
ing Eqs.~2! and ~10! in Eq. ~11!,
se
hi
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of
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ZN5E drNexp@2U~rN!/kT#E dsN

3expS 2(
i 51

N

~a/kT!si
22

1

2 (
i , j 51

N

8 @f0~r i j !/kT

1f1~r i j !~si1sj !/kT# D
5E drNexpS 2

U~rN!

kT
2

1

2 (
i , j 51

N

8
f0~r i j !

kT D
3)

i 51

N H E
2`

`

dsiexpS 2
a

kT
si

22 (
j 51 j Þ i

N
f1~r i j !

kT
si D J ,

~13!

where to obtain the second line we expressed the inte
over thes variables as a product of integrations over ea
one and then grouped all the terms which depend on eacsi
together. Each integration over ans variable is independen
and can be done easily,
ZN5E drNexpS 2
U~rN!

kT
2

1

2 (
i , j 51

N

8
f0~r i j !

kT D)
i 51

N H S pkT

a D 1/2

expS 1

4akT F (
j 51 j Þ i

N

f1~r i j !G2D J
5S pkT

a D N/2E drNexpS 2
U~rN!

kT
2

1

2 (
i , j 51

N

8
f0~r i j !

kT D)
i 51

N H expS 1

4akT (
j 51 j Þ i

N

(
k51 kÞ i

N

f1~r i j !f1~r ik!D J
5S pkT

a D N/2E drNexpS 2
U~rN!

kT
2

1

2 (
i , j 51

N

8
f0~r i j !

kT
1

1

4akT (
i , j ,k51 j Þ ikÞ i

N

f1~r i j !f1~r ik!D , ~14!
in
ded.
where to obtain the second from the first line we expres
the square of the sum as a double sum. To obtain the t
line we converted the product of exponentials to the ex
nential of a sum. The factor in front of the integration is
course very familiar: it is just the partition function ofN
independent simple harmonic oscillators. It does not dep
on density and so has no effect on the phase behavior. N
that in the triple sum, although neitherj nor k can be equal to
i, j can be equal tok. The restrictions onj andk derive from
the fact that a particle cannot interact with itself, whi
would correspond toj ,k5 i , but as bothj andk in the triple
sum come from the square of a single sum they are in ef
from the same interaction and therefore are allowed to
equal. We can rewrite Eq.~14! by extracting thej 5k terms
from the triple sum,
d
rd
-

d
te

ct
e

ZN5S pkT

a D N/2E drNexpS 2
U~rN!

kT

2
1

2 (
i , j 51

N

8 Ff0~r i j !

kT
2

f1~r i j !
2

2akT G
1

1

4akT (
i , j ,k51

N

8 f1~r i j !f1~r ik!D , ~15!

where the triple sum has a prime to indicate that terms
which any of the three subscripts are the same are exclu
The configurational integral, Eq.~15!, is an integral only
over the positions of theN particles. Neglecting the irrel-
evant~for the phase behavior! prefactor it is nothing but the
configurational integral of the HamiltonianHe f f ,
He f f~rN!5U~rN!1
1

2 (
i , j 51

N

8 Ff0~r i j !2
f1~r i j !

2

2a G2
1

6 (
i , j ,k51

N

8
@f1~r i j !f1~r ik!1f1~r i j !f1~r jk!1f1~r ik!f1~r jk!#

2a
,

~16!
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2504 PRE 62RICHARD P. SEAR
where we have rewritten the summand of the triple sum
make it symmetric with respect to the three indices. T
phase behavior of our model particles will be identical to t
of structureless, spherically symmetric particles with inter
tions described by the HamiltonianHe f f of Eq. ~16!. The
Hamiltonian is that of a triplet or three-body potential; t
first two sums are conventional sums over pair potentials
the last sum is over a three-body potential. We started wi
pair potential which depended on thes variables as well as
the positions; integration over thes variables resulted in a
potential which depends only on the positions but is
longer a simple pair potential.

The effective HamiltonianHe f f can lead to behavio
qualitatively different from that of a Hamiltonian which is
simple sum over a pair potential. To see this we will co
pare the interaction between a pair of particles to that
tween a triplet of particles. For a pair of particles 1 and 2
distancer apart, the interaction is from Eq.~16!,

He f f~r2!5U~r2!1f0~r !2
1

2

f1~r !2

a
. ~17!

Note that the contribution due to the fluctuations, the p
inversely proportional toa is always negative regardless
the sign off1; fluctuations always produce an effective a
traction. Now, consider three particles, at the corners of
equilateral triangle of sider for simplicity. We denote the se
of three coordinates marking the corners of an equilat
triangle byre

3 . The interaction is, from Eq.~16!,

He f f~re
3!5U~re

3!13f0~r !23
f1~r !2

a
. ~18!

If we compare this with the interaction of a pair, Eq.~17!, we
see that the ratio of thef1

2/a to f0 term has doubled. For a
pairwise additive potential, the interaction free energy wo
be simply 3 times Eq.~17!: 3f02(3/2)f1

2/a. The relative
contribution from the fluctuations in thes variables has
doubled. This contribution is always attractive, so the f
energy of attraction is always more negative than for a p
wise additive potential. This is a general result for a wea
fluctuating scalar variable. Our result for the interaction b
tween three particles may be compared with the more mi
scopic work on the interaction between three particles
Löwen and co-workers. They considered triplet interactio
between charged colloidal particles@15# and between sta
polymers@16#.

Whenf0(r ).0 andf0(r ),f1(r )2/a,2f0(r ), the in-
teraction minus the part fromU is repulsive, i.e., greater tha
zero, for a pairr apart but attractive for a triplet at the co
ners of an equilateral triangle of sider. If U is some short-
range repulsion, e.g., a hard-sphere repulsion, which is
at some sufficiently large value ofr, then it is possible for a
pair of our model colloidal particles to repel each other, b
for a triplet of them to attract. For other arrangements
three particles the sign of the interaction free energy w
depend on the values of the three separations of the ce
of the particles and on the distance dependence off0 and
f1. However, this should not obscure the basic fact that
interaction free energy of three particles can be nega
when the interaction of two particles is positive. For fo
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particles at the corners of a tetrahedron the interaction m
the part fromU is 6f029f1

2/a. Again, it is possible to
obtain negative interaction free energies even when the
teraction free energy of a pair is always positive. Indeed i
possible to obtain negative free energies even when they
positive for three particles at the corners of an equilate
triangle.

IV. MEAN-FIELD FREE ENERGY

In order to able to keep the theory simple we now sp
cialize to an interaction between the internal variables wh
is both weak and long ranged. Weak in the sense
uf0(r )u,uf1(r )f1(r 8)/au!kT for all values of r, r 8, and
long ranged as bothf0(r ) and f1(r ) decay to zero over a
characteristic length scale which is much longer than
hard-sphere diameters. We also setU to be the hard-sphere
interaction. So the interaction Hamiltonian, Eq.~16!, which
is a function of the positions only, consists of a hard-sph
interactionU and a weak long-ranged interaction which h
two parts: a pair potential and a triplet potential. Weak b
long-range many-body interactions have been considere
the author in Ref.@17#.

We view the long-range part of the interactions as a p
turbation@18#. The free energy is expressed as that of h
spheres,Ahs , plus the difference in free energy between
system of our particles and that of hard spheres,DA,

A5Ahs1DA. ~19!

For the hard-sphere free energy we use the expressio
Carnahan and Starling@19# for the fluid phase and the fit to
simulation data of Hall@20# for the solid phase. We approxi
mateDA by an average of the perturbing part of the Ham
tonian,He f f2U,

DA5

E drN@He f f~rN!2U~rN!#exp@2U~rN!/kT#

Zhs
,

~20!

whereZhs is the configurational integral forN hard spheres.
Substituting Eq.~16! into Eq. ~20!,

DA5Zhs
21E drNexp@2U~rN!/kT#

3H 1

2
N~N21!S f0~r 12!2

f1~r 12!
2

2a D
2

1

6
~N21!~N22!

3f1~r 12!f1~r 13!

2a J . ~21!

The n-particle density of hard spheres,rhs
(n) , and their

n-particle distribution functionghs
(n) are defined as@18#
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rhs
(n)~rn!5S )

i 51

n

rhs
(1)~r i !D ghs

(n)~rn!

5
N!

~N2n!!

E exp@2bU~rN!#drN2n

Zhs
. ~22!

The one-particle densityrhs
(1)(r ) is not assumed to be un

form so that the theory applies to crystalline as well as fl
phases. Using, Eq.~22! in Eq. ~21!, we obtain

DA5
1

2E dr2rhs
(2)~r1 ,r2!S f0~r 12!2

f1~r 12!
2

2a D
2

1

4aE dr3rhs
(3)~r1 ,r2 ,r3!f1~r 12!f1~r 13!. ~23!

As f0 ,f1 decay to zero only when the separations of
particles are much larger thans, the integrals in Eq.~23! are
dominated by configurations when the spheres are far a
i.e., where the pair separations are much larger thans. In a
fluid the one-particle density is a constant,r (1)5r, and at
separations large with respect tos the distribution function
is close to 1,ghs

(n).1. Thus in the fluid phase the integran
of Eq. ~23! can be simply approximated byr2@f0(r 12)
2f1(r 12)

2/2a# and r3f1(r 12)f1(r 13). In a crystalline
phase, although there are long-range correlations inrhs

(n) , the
one-particle densityrhs

(1) averaged over a unit cell is justr.
The attractive interaction between particles has a range m
larger than the lattice constant of the lattice~a little larger
thans) and so asf0 andf1 vary little across a unit cell we
can regardrhs

(1)(r ) as approximately constant at its avera
value,r. Similarly, as we change any one of then position
vectors upon which then-body distribution functionrhs

(n) de-
pends, the density oscillates rapidly over each unit cell
averages tor. So in the crystalline phase as well as in t
fluid phase we approximaterhs

(n) by rn. Then the integrands
are the same as in a fluid phase. We have

DA5
1

2
Vr2E

s

`

dr S f0~r !2
f1~r !2

2a D
2

1

4a
Vr3S E

s

`

drf1~r ! D 2

. ~24!

Now the term coming from the square off1 is negligible if
f1 is long ranged. To see this consider an explicit functio
form for f1. We choose a Kac potential

f1~r !5eg3exp~2gr /s!. ~25!

The range of this function iss/g; i.e.,g21 is a range in units
of s. Now the integral of Eq.~25! over three-dimensiona
space isO(es3); essentially the integrand is of ordereg3

within a volume of order (s/g)3, and negligible outside o
this volume. However, the integral of the square of Eq.~25!
over three-dimensional space isO(e2s3g3). For a long-
rangef1, the inverse rangeg!1 and so the integral of the
square is negligible. We chose a specific functional form
d

e

rt,

ch

t

l

r

f1 simply for clarity; our conclusion that the integral of th
square is negligible holds for any long-range slowly dec
ing function.

So, in Eq.~24!, we neglect thef1
2 term, integrate over the

remaining terms in Eq.~24!, and obtain

DA

N
5

1

2
rn02

1

4

~rn1!2

a
, ~26!

wheren0 andn1 are the integrals

E
s

`

drf i~r !5n i , i 50,1. ~27!

The pressurep can be easily derived from the free energ
Eq. ~26!,

p5phs1
1

2
r2n02

1

2

r3n1
2

a
, ~28!

wherephs is the pressure of hard spheres. The contribut
from the fluctuations in thes variables to the pressure i
cubic in the density as it must be; it is equivalent to a lon
range three-body attraction@17#. The chemical potentialm is
then simply given bym5A/N1p/r. The pressure and
chemical potential as functions of the temperature and d
sity allow us to calculate phase diagrams.

V. RESULTS

The free energy, Eq.~26!, depends on a single paramete
the dimensionless ratioR5n0as3/n1

2. R ranges from2` to
1`; the sign ofR is determined by the sign ofn0 asa must
be positive. The larger the magnitude ofR, the more domi-
nant is the part of the interaction potential which does
depend ons and so the closer the interaction is to a pairw
additive potential. In theR→2` limit the interaction is a
simple pairwise additive attractive potential. Then the fr
energy is just a modification of the free energy of van d
Waals@18,21–23#, the modification being the replacement
his approximate free energy of hard spheres by that of C
nahan and Starling@19# in the fluid and that of Hall@20# in
the crystal. In theR→1` limit the potential is again pair-
wise additive but it is repulsive. A long-range repulsio
tends to cause not bulk vapor-liquid separation but m
crophase separation; see Refs.@22,24#. The R→6` limits
result from either the interaction between particles not
pending on the value of thes variables,n1→0, or the fluc-
tuations of thes variables tending to zero,a→`.

WhenR is finite then the interactions depend on the flu
tuations ins and are no longer pairwise additive. ForR,0
the interactions are attractive even in the absence of fluc
tions in s; the fluctuations ins merely make the attraction
stronger and not pairwise additive. ForR.0 the pairwise
interactions are repulsive while the three-body interactio
from the fluctuations are, as always, attractive. The par
the free energy due to fluctuations, the last term in Eq.~26!,
is one power higher in the density than the part independ
of the fluctuations, the second in Eq.~26!. Thus, if n0.0,
the interactions are always repulsive at sufficiently low de
sities but become attractive, i.e., contribute a nega



d

ce

er
a

a
a
i

on
e
rg
u

ic

he

-
uch
tio
le
at
1
he

e
er
ot

f-

m,
ra-
ap-
see

p-
tive
-
aals
ist-
the

ine
ons
ase
rs
the
the
ur
se
n is

les
ut

n

V,
ap
ne
lin

n

s

nge
ting

ase
The

ike
to

es.

2506 PRE 62RICHARD P. SEAR
amount to the free energy of the system, at a density 2R/s3.
We now discuss some example phase diagrams. The

grams are in the density-temperature plane. We use the
duced densityh5(p/6)rs3, which is equal to the fraction
of the volume occupied by the hard cores, and a redu
temperatureT* which is eitherkTs3/un0u or kTas6/n1

2. For
reference we plot the familiar phase diagram of hard sph
with a long-range attraction, often called the van der Wa
fluid @21–23#, the R→2` limit. This has a free energy
given by Eqs.~19! and~26! with n150 andn0,0. The first
condition means that the internal variables on different p
ticles do not couple and so the attraction is a simple p
potential and the second condition makes the long-range
teraction attractive so that there is a vapor-liquid transiti
i.e., phase separation into two fluid phases of different d
sities. The phase diagram is shown in Fig. 1; there is a la
temperature range over which there is stable vapor-liq
coexistence. This is, of course, not new; in then150 limit
our model reduces to the most basic model of particles wh
form a liquid.

In Fig. 2 we show the phase diagram of particles withR
50. The long-range interaction is purely proportional to t

FIG. 1. The phase diagram of hard spheres plus a long-ra
pairwise additive attraction, a van der Waals fluid.n150, n0,0
and the reduced temperatureT* 5kTs3/un0u. The thick solid
curves separate the one- and two-phase regions. The letters
and C denote the regions of the phase space occupied by the v
liquid, and crystalline phases, respectively. The horizontal thin li
are tie lines connecting coexisting densities, and the dotted
connects the three coexisting densities at the triple point.

FIG. 2. The phase diagram of hard spheres plus a long-ra
interaction proportional to the fluctuating internal variables. n0

50, and the reduced temperatureT* 5kTas6/n1
2. See caption to

Fig. 1 for the meaning of the letters, curves, and horizontal line
ia-
re-

d

es
ls

r-
ir
n-
,

n-
e

id

h

internal variables, i.e.,n050. There is vapor-liquid coexist
ence over a range of temperatures but this range is m
smaller than for the simple pair potential of Fig. 1. The ra
of the temperature at the critical point to that at the trip
point is smaller in Fig. 2 than in Fig. 1. Also, the density
the critical point is higher; it is almost double that in Fig.
and so the density range of the liquid phase is small. T
interaction betweens variables is effectively a long-rang
three-body attraction, i.e., an attraction which is van d
Waals like except for the fact that it is between triplets n
pair of particles@17#. The phase diagram, Fig. 2, differs from
Fig. 2 of Ref.@17# only in that the temperature scale is di
ferent.

In Fig. 3 we show the phase diagram of particles withR
50.5. There is no vapor-liquid coexistence at equilibriu
only a fluid-crystal coexistence region which broadens d
matically at low temperatures. The liquid phase has dis
peared. For other examples of liquid phases disappearing
Ref. @25#; the most studied system in which the liquid disa
pears is that of particles with a short-range, pairwise addi
attraction @26–29#. Within the fluid-crystal coexistence re
gion the pressure and chemical potential have van der W
loops, so our bulk free energy predicts vapor-liquid coex
ence within the fluid-crystal coexistence region. Note that
density at the critical point is even higher than in Fig. 2.

We have only considered fluid phases and crystall
phases. However, sufficiently strong long-range repulsi
can transform a bulk phase separation into a microph
separation@22,24#. Essentially, microphase separation occu
when the interaction between particles is repulsive at
largest separations at which they interact separately and
repulsion is sufficiently strong and long ranged. Thus o
present theory, which neglects the possibility of micropha
separation, should not be used if the long-range interactio
predominantly repulsive, i.e., ifn0.0, and eitherf0 is
longer ranged thanf1, or R@1.

Structure of the fluid phase

We have shown that the phase behavior of our partic
can be very different from that of a simple pair potential b

ge

L,
or,
s
e

ge

.

FIG. 3. The phase diagram of hard spheres plus a long-ra
repulsion and a long-range attraction proportional to the fluctua
internal variable s. R50.5, and the reduced temperatureT*
5kTas6/n1

2. The letters F and C denote the regions of the ph
space occupied by the fluid and crystalline phases, respectively.
dotted curve is the bulk free energy prediction of a vapor-liquid-l
transition within the fluid-crystal coexistence region. See caption
Fig. 1 for the meaning of the other curves and the horizontal lin
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what about the structure? Of course the pair distribut
function or equivalently the structure factor@18# depends on
the functional form of the interactions, i.e., on the prec
forms of the functionsf0(r ) andf1(r ). However, we have
only considered long-range interactions and there the b
phase behavior is insensitive to the precise details off0(r )
and f1(r ); it only depends on their integralsn0 and n1.
Also, long-range interactions only affect the structure fac
S(q) at small wave vectorsq, small meaning of order of the
reciprocal of their range or less. Thus, we will consider o
the zero-wave-vector limitS(0) of the structure factor. This
is simply related to a thermodynamic quantity, the isotherm
compressibilityxT , by @18#

S~0!5rkTxT , ~29!

where

xT
215rS ]p

]r D
T

. ~30!

Using Eq.~28! for the pressure,

xT
215rS ]phs

]r D
T

1r2n02
3

2

r3n1
2

a
. ~31!

Equations~29! and ~31! give us the zero-wave-vector stru
ture factor of our particles. Below we will consider the de
sity dependence ofS(0). It will therefore be useful to obtain
S(0) as a density expansion. To do this we start by inser
the virial expansion for the pressure into the definition of
isothermal compressibilityxT , Eq. ~30!. Inserting this ex-
pansion into Eq.~29! for S(0) yields

S~0!5122B2r1O~r2!; ~32!

the initial slope ofS(0) is equal to minus twice the secon
virial coefficientB2. For our particles,

B25
2

3
ps31

1

2

n0

kT
, ~33!

where the first term on the right hand side is the second v
coefficient of hard spheres. Note that the fluctuations in ths
variables do not contribute to the second virial coefficie
This is only the case in the long-range interaction limit.
Sec. III and in Eq.~24! we found that in general the fluctua
tions did contribute to the interaction between pairs a
hence to the second virial coefficient but that this contrib
tion was weaker than its contribution to the interaction b
tween larger numbers of particles and to the third virial c
efficient. The term in the free energy per unit volum
proportional ton1

2/a which comes from the fluctuations va
ies with density asr3 and so it contributes~only! to the third
virial coefficient.

In Fig. 4 we have plotted the zero-wave-vector struct
factor for a van der Waals fluid~hard spheres plus a long
range pairwise additive attraction! ~the solid curve!, and for
an attraction which is proportional tos ~the dashed curve!.
They are both at temperatures just above the critical temp
ture. The peaks inS(0) are due to the nearby critical point
whereS(0) diverges, of course. The striking difference b
n

e

lk

r

l

-

g
e

al

t.

d
-
-
-

e

a-

-

tween the curves is their opposite slopes at low densit
The limiting slope at vanishing densities is equal
22B2, Eq. ~32!. For a van der Waals fluid the second viri
coefficient is negative at the critical temperature, so the sl
of S(0) is positive until above the critical density. Howeve
interactions between fluctuations do not contribute to
second virial coefficient and so it is equal to that of ha
spheres which is positive. Thus the slope ofS(0) is negative
at low densities andS(0) goes through a minimum below th
critical density.

VI. CONCLUSION

Particles which have a fluctuating internal state interac
a way which is different from structureless particles. T
interaction is intrinsically many body and cannot be d
scribed using a pair potential. It is even possible for pairs
particles with a fluctuating state to repel but larger clusters
particles to attract each other. We have studied a rather
neric model of a particle with a fluctuating state. Rema
ably, because of the very simple form of our Hamiltonian
dependence on the variables which describe the states o
particles@see Eq.~10!#, we have been able to integrate ov
these variables exactly and analytically. The result is an
teraction between the particles which has both pair and t
let interactions, Eq.~16!. Our model only included the lead
ing order terms in Taylor expansions for the free ene
associated with the internal states of the particles. It is p
sible to include higher order terms although then thes vari-
ables will have to integrated over approximately or nume
cally; alternatively computer simulation could be used.
any case the effective potential will then contain not on
pair and triplet terms but terms of all orders, four-body, fiv
body, etc.

It is perhaps of interest to contrast the particles with m
soscopic fluctuations studied here to the rods with mic
scopic fluctuations studied by Ha and Liu@30#; see also Refs.
@31–33#. They studied the interactions between parallel ro

FIG. 4. The zero-wave-vector structure factor of our particles
the fluid phase,S(0), as afunction of the volume fractionh. The
solid curve is for an attraction which does not depend ons, the
potential with the phase diagram of Fig. 1.n0 /(s3kT)5210,
which is just above the critical temperature. The dashed curve is
an attraction which is proportional to the fluctuating internal va
able s, the potential with the phase diagram of Fig.
n1

2/(s6kTa)519.4, which is again just above the critical temper
ture.
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and allowed the charge density along each rod to fluctuat
a rod is along thez axis then we can define a one
dimensional charge densityr(z), which will fluctuate. The
Coulomb interaction between charges will then couple
fluctuations inr(z) in nearby rods. Ha and Liu found tha
not only can this coupling generate an attraction but that
strongly nonpairwise additive. In contrast with their mod
our is rather general and simpler. The results for our rat
nonspecific model show clearly that these findings of Ha
Liu are rather generic. The disadvantage of our model w
respect to that of Ha and Liu is that to relate it to experim
requires determining or at least guessing the appropriate
ues of the parameters of our phenomenological interacti

We hope that our model will be useful for determinin
generic differences in the behavior between rigid partic
interacting via a pair potential and particles with a fluctuat
state. For example, although all our calculations have b
for a single component, they are easily generalized to m
tures. When this is done, it is straightforward to see tha
the fluctuations between the internal states of particles
different components are only weakly coupled, then this w
tend to drive phase separation of these components. H
ever, differences between the inverse susceptibilitya cannot
drive phase separation. At least within our theory which
cludes only leading order terms.
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APPENDIX

Rather generally, when we are evaluating a configu
tional integral, with the aim of calculating the free energ
we can split the variables over which we are integrating i
two sets. Then integrating over one set is always possibl
principle, and it results in an effective Hamiltonian which
a function only of the remaining set of variables. Howev
this effective Hamiltonian is not in general pairwise additiv
simply because there is no reason for it to be. If we den
n-
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the set of all variables byvN1M and the two subsets byvN

andvM, then the configurational integral is

Z5E dvN1Mexp@2H~vN1M !/kT#

5E dvNexp@2H8~vN!/kT#, ~A1!

where

exp@2H8~vN!/kT#5E dvMexp@2H~vN1M !/kT#.

~A2!

H8 will not in general be expressible as a sum over a p
potential even ifH can be. Physically, this is most ofte
useful when the two sets of coordinatesvN andvM are very
different. We consider a model in which the set of coor
natesvM is coarse grained@12#; i.e., the integration overvM

is left as a function of a set of coarse-grained variables
instead of Eq.~A2! we have

exp@2H8~vN,cL!/kT#

5E dvMexp@2H~vN1M !/kT# )
a51

L

d„ca~vM !2ca…,

~A3!

wherecL is a set ofL!M coarse-grained variables.ca is the
ath coarse-grained variable andca(vM) is the definition of
the ath coarse-grained variable in terms of the microsco
coordinatesvM. The configurational integral is then

Z5E dvNdcLexp@2H8~vN,cL!/kT#. ~A4!

Our model has a configurational integral, Eq.~11!, of this
form, with L5N as there is one coarse-grained variable
particle. ThevN and cN coordinates are the positions ands
variables of the particles.
s.
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