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Phase behavior of a model of colloidal particles with a fluctuating internal state
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Colloidal particles are not simple rigid particles; in general an isolated particle is a system with many
degrees of freedom in its own right, e.g., the counterions around a charged colloidal particle. The behavior of
model colloidal particles, with a simple phenomenological model to account for these degrees of freedom, is
studied. It is found that the interaction between the particles is not pairwise additive. It is even possible that the
interaction between a triplet of particles is attractive while the pair interaction is repulsive. When this is so the
liquid phase is either stable only in a small region of the phase diagram or absent altogether.

PACS numbd(s): 82.70.Dd, 78.30.Cp

I. INTRODUCTION has the conventional form of Edl). Here we develop a
simple phenomenological theory for colloidal particles
Theories for the behavior of systems of particles usuallywhich treats each particle as a fluctuating statistical mechani-
apply to a model for the interaction between particles incal system. See Refs4—11] for recent theoretical work on
which the energy of interaction is pairwise additive. Theunderstanding this behavior starting from a Hamiltonian
Hamiltonian is of the form which explicitly includes the counterions and the electro-
\ static interactions. The theory is phenomenological as we
N , simply assumehat the state of a particle can be described by
H(r ):ijzzl u(rij), (D asingle coarse-grained scalar variable; we do not derive this.
’ This scalar variable fluctuates and these fluctuations are per-
a sum of spherically symmetric pairwise-additive potentialsturbed by the presence of another particle nearby. The per-
u(r). rN denotes the coordinates of thNeparticles and ; is turbations due to the particles which surround any given par-
the scalar separation of particleand]. But experiments are ticle add up, meaning that the state of a particle changes with
almost never on simple rigid particles. For example, the parthe number of its neighbors. Essentially, the more particles
ticles in a colloidal suspension are not simple rigid particlesthat surround any given particle, the more the particle’s fluc-
Generally they are stabilized in the suspension either by bduations are biased towards values that minimize the interac-
ing charged, in which case they are surrounded by a cloud dfon free energy and so the more attractive is the interaction
counterions, or by having short polymers grafted to theietween the given particle and all the surrounding particles.
surface[1]. In either case we have not a rigid particle but alt is possible for two of our model particles to repel each
system with many degrees of freedom, e.g., the positions d¥ther but for particles in clusters of more than two particles
the counterions, which fluctuate. Each particle is a systenf0 attract each other. This can lead to coexistence between a
with a free energy, susceptibilities, etc., in its own right. dilute fluid and a dense crystal phase even when a pair of
Here we will treat systems of particles, each of which is aparticles repel each other. We will show that generally if the
weakly fluctuating statistical mechanical system in its ownfluctuations can be described by a scalar variable, then the
right. Each particle will have a Landau-like free energyinteraction between a pair of particles within a cluster of
which couples to that of neighboring particles. We will useseveral particles is more attractive than between an isolated
the simplest possible form of this free energy, and showpair.
exactly and analytically that it leads to many-body attrac- In the next section we define our model. In Sec. Il we
tions. These cannot be expressed as a Hamiltonian with thghow that it exactly corresponds to a potential between struc-
form of Eq. (). tureless particle which contains both pair and triplet terms.
This work is partly inspired by recent experiments onThen in Sec. IV we apply a perturbation theory to obtain an
highly charged colloidal particles under conditions of mini- @pproximation to the free energy of both the fluid and crys-
mal amounts of added salt. The potential of mean force betalline phases, which is accurate for long-ranged interactions
tween arisolatedpair of colloidal particles with minimal salt between the fluctuating internal states. We show results for
concentrations has been measured and is purely repulsi¥e phase behavior and for the zero-wave-vector structure
[2]. Yet the particles form crystallites which appear to befactor in Sec. V. Section VI is the conclusion.
metastable at close to zero osmotic pres$8igethis is very
hard to explain unless there is some sort of cohesive attrac-
tion between the particles in the crystallites. It does not seem
possible to explain these findings with a Hamiltonian which  Our model particles have an internal state specified by a
depends only on the coordinates of the colloidal particles andingle scalar variables. The value of thes variable for a
single isolated particle fluctuates weakly. Essentially, we
view it as a coarse-grained variahl?] obtained by averag-
*Email address: r.sear@surrey.ac.uk ing over some large number of degrees of freedom associ-
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ated .with. each particle.. An outline of how our mespscppic f2)(s,8",1)=po(r)+ p1(r)(s+5S")+ o(r)(s*+5s'?)
Hamiltonian may be derived from a microscopic one is given

in the Appendix. The interaction between a pair of the par- +¢y(r)ss' +-- . (7)
ticles depends on the value of this variable. Thus, when two

particles interact the mean values of theariables on the The coefficients, a3, etc., are derivatives dft*),

two particles will change; the particles “polarize” each

other. The interaction between them biases both internal 1 d?f)(s)

variables towards values for which their interaction free en- a=5 R ®
ergy is low. We included polarize in quotation marks be-
cause our model is phenomenological not electrostatic; cf

. ) 9 and a3 is 1/6 times the third derivative, etc. Similarly, the
Ref. (8] which considers the polarization of one charged COI'coefficients¢o(r), 6.(1), etc., are derivatives of® at a
loidal particle by another.

The effective HamiltoniarH of the system of particles fixed separation of the particleg, is the zeroth derivative,

} ) . ¢4 is the first derivative with respect to either of the two
has two parts: one part mdependent'ofsl;hxarlables,uZ and variables,
the other the free energy of the particles as a function of the

N internal variablesF,

&f(z)(s,s’,r)) ©

¢>1<r>=( -

H(rN,sNM)=U(rN)+Fy(rN,sY), 2)

whererN andsM symbolize the center-of-mass and internal- gnq similarly for the higher derivatives,, etc.
variable coordinates, respectively, of Bllparticles. Our Taylor expansions are quite general for particles
We need not specify) beyond saying that it should be which have a state which can be described by a single
such that the system has a well-defined thermodynamic limigyeakly fluctuating scalar variable and in which the interac-
[13]. Later on we will setU to be the sum of hard-sphere tjon between two particles can be expressed in terms of this
repulsions between pairs of the particles, variable. If the variable is a vector or a tensor and not a
scalar, then clearly there will be expressions analogous to
that of Eq.(5) but vectorial or tensorial variables will in

N

Ny !
u(r= 2 i,j§=:l Uns(rij), ®) general lead to results very different from those found here.
We truncate the Taylor expansions, E@.and(7), after
whereuy is the hard-sphere potential: their lowest nontrivial terms and substitute the resulting ex-
pansions into Eq(5) to obtain
0, r=o,
Und)=1 @ N

N
1 )
PrsY) =2y astts 2 " [do(ri)+ dalry)(si+)].
r is the separation of the centers of the interacting particles. ' (10)
The prime to the sum in Eq3) means that the sum is only
over those terms for whicf#i. Note that not all the double The inverse susceptibility and the zerothg,, and first,¢,
and triple sums below will have a prime; in the unprimedorder coefficients all have the dimensions of energy. So for
ones terms with equal subscripts are summed over. our Hamiltonian, Egs(2) and(10), to describe a system of

Each particle has a dimensionless internal variable particles accurately we requitg) that the fluctuations is of
Now, we assume that the coupling between these variablesn isolated particle be sufficiently small that the higher order
on different particles is pairwise additive and sphericallyterms inf(*) may be neglected?) that the interactions be-
symmetric. Then the free ener@y is tween the particles can be described as a sum over interac-
\ tions of pairs,(3) that this interaction is spherically symmet-

N N ) 1 '@ ric, (4) that this interaction can be accurately described by a

Fn(rts )_;1 s+ 5 izl F2(sis;.rij). (9 function of this single scalar, coarse-grained, variable, and
) (5) that the interactions between fluctuations are sufficiently

£ is the free energy of a single isolated particle and is aveak that the higher terms iff*) and f(*) are small.

function only of itss variable.f(?) is the difference in free For noninteracting particles the second sum of Bd)
energy between an isolated pair of particles and two isolatef'@y be neglected arfl is just a sum of independent qua-
particles, and is a function only of the tvevariables and the dratic terms. The distribution of the's is then Gaussian,
magnitude of the separation of the two particles. An isolateqvhich is correct for small fluctuations of a coarse-grained
particle is a particle far from any other particle; an isolatedvariable[12,14. « is the inverse susceptibility of an isolated
pair of particles is a pair of particles far from any other Particle; the smaller it is, the larger are the fluctuations. The
particle. For weak fluctuations is small, so we Taylor ex- interaction between a pair of particles is expressed as a Tay-

N

pandf® andf®), lor expansion in the twa'’s truncated after the linear term.
One particle feels an interaction due to another nearby par-
f(s)= as?+ ass®+ ayst+- - -, (6) ticle, which couples to its order parametewith a strength

¢1(r). The s dependence of the free energy of E40) is
where the linear term is missing as the variablis defined what we would expect if the particles were weakly interact-
so that if a particle is isolated, its mean value is zero, and ing, weakly fluctuating thermodynamic systems.
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I1l. EXACT THEORY
ZN=J drNexr[—U(rN)/kT]J dsV
We start from the configurational integraf, for N par- \

N
. : 1 ,
ticles in a volumeV and at a temperaturg ><exp< —E (a/kT)SiZ—— 2 [ olr)IKT
— [~

zsz drvdsNexd —H(rN,sY)/kT], (1) +¢’1(”J)(Si+si)’kﬂ)

U 1 &, dolryy)
_ N _ _= ! J
—fdl’ exy{ kT 271 kT
with the Hamiltonian given by Eq$2) and(10). The Helm- \

holtz f is th N (rij)
oltz free energyA is then H [f dsexp(—ﬁ_s S ¢lij Sl)],

j=1 j#i

(13

where to obtain the second line we expressed the integral

over thes variables as a product of integrations over each

one and then grouped all the terms which depend on gach
whereA derives from the integration over the momenta. Us-together. Each integration over arvariable is independent
ing Egs.(2) and(10) in Eq. (12), and can be done easily,

A= —KTIn(ZyAN/N!), (12

Z o))

N N N 1/2
ZN=f drNexp< v )_%”21’ ¢°(r'l))iljl[ TrkT) exp<4 !

7k T\ N2 ury 1 &, ¢o(r ) " "
( ) fd Ve p(— 5 2|10 je B By BTl
kT 2 ij=1 =1 =1 =1k
7k T\ N2 p( ury 1 &, o) 1 )
_Z + r Fid) |, 14
( ) f T 2 IJzzl kT AakT i,j,kZIEjiikii ¢1( Ij)¢l( Ik) ( )
|
where to obtain the second from the first line we expressed akT\ N2 U(rN)
the square of the sum as a double sum. To obtain the third (— J’ drNex KT
line we converted the product of exponentials to the expo- @
nential of a sum. The factor in front of the integration is of 1 N bo(ri) ¢ (ri)2
- e . . ' o\lij 1
course very familiar: it is just the partition function &f 3 2 [ SakT
independent simple harmonic oscillators. It does not depend b=t @
on density and so has no effect on the phase behavior. Note 1
that in the triple sum, although neithienor k can be equal to 4akT 2 P( rij)¢1(rik)), (15
ij k=1

i, j can be equal t&. The restrictions oy andk derive from

the fact that a particle cannot interact with itself, whichynere the triple sum has a prime to indicate that terms in
would correspond tg,k=i, but as botfj andk in the triple  which any of the three subscripts are the same are excluded.
sum come from the square of a single sum they are in effecthe configurational integral, Eq15), is an integral only
from the same interaction and therefore are allowed to bever the positions of thé\ particles. Neglecting the irrel-
equal. We can rewrite Eq14) by extracting thg =k terms  evant(for the phase behavipprefactor it is nothing but the
from the triple sum, configurational integral of the Hamiltoniaf,+,

N

1
Her(r")=U(r")+5 2 [%( rj)—

d’l( u) 1 z / [¢1(ru)¢1(r|k)+¢1(ru)¢1(r1k)+¢1(r|k)¢1(rjk)]
6 i,j,k=1 2a

(16)
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where we have rewritten the summand of the triple sum t@articles at the corners of a tetrahedron the interaction minus
make it symmetric with respect to the three indices. Thethe part fromU is 6¢o—9¢3/a. Again, it is possible to
phase behavior of our model particles will be identical to thaiobtain negative interaction free energies even when the in-
of structureless, spherically symmetric particles with interacteraction free energy of a pair is always positive. Indeed it is
tions described by the Hamiltonid s of Eq. (16). The  possible to obtain negative free energies even when they are
Hamiltonian is that of a triplet or three-body potential; the positive for three particles at the corners of an equilateral
first two sums are conventional sums over pair potentials butriangle.

the last sum is over a three-body potential. We started with a

pair potential which depended on tkevariables as well as

the positions; integration over thevariables resulted in a IV. MEAN-FIELD FREE ENERGY
potential which depends only on the positions but is no ,
longer a simple pair potential. In order to able to keep the theory simple we now spe-

The effective HamiltonianH.; can lead to behavior cialize to an interaction between the internal variables which
e

qualitatively different from that of a Hamiltonian which is a 1S Poth weak and{ long ranged. Weak in the sense that
simple sum over a pair potential. To see this we will com-|#o(r)|:[#1(r) $1(r")/a|<KkT for all values ofr, r’, and
pare the interaction between a pair of particles to that belONg ranged as botkbo(r) and ¢,(r) decay to zero over a

tween a triplet of particles. For a pair of particles 1 and 2, gcharacteristic length scale which is much longer than the

distancer apart, the interaction is from E16), hard-sphere diameter. We also setJ to be the hard-sphere
interaction. So the interaction Hamiltonian, EG6), which
1 ¢q(r)? is a function of the positions only, consists of a hard-sphere

Her(r3)=U(r?)+ o(r) — > (170 interactionU and a weak long-ranged interaction which has
two parts: a pair potential and a triplet potential. Weak but

Note that the contribution due to the fluctuations, the parfong-range many-body interactions have been considered by

inversely proportional tar is always negative regardless of the author in Ref[17]. _ _

the sign of,: fluctuations always produce an effective at- e view the long-range part of the interactions as a per-

traction. Now, consider three particles, at the corners of afirbation[18]. The free energy is expressed as that of hard

equilateral triangle of sidefor simplicity. We denote the set SPhereésAns, plus the difference in free energy between a
of three coordinates marking the corners of an equilaterafyStem of our particles and that of hard spheres,
triangle byrg. The interaction is, from Eq16),

¢1(r)2

a

o

A=A+ AA. (19)

Herr(r3)=U(rd)+3¢o(r)—3 (18)

o ) ) ) For the hard-sphere free energy we use the expression of
If we compare this with the interaction of a pair, E#7), we  carnahan and Starling.9] for the fluid phase and the fit to
see that the ratio of thé/a to ¢, term has doubled. For a sjmulation data of Hall20] for the solid phase. We approxi-
pairwise additive potential, the interaction free energy wouldmateAA by an average of the perturbing part of the Hamil-
be simply 3 times Eq(17): 3¢o—(3/2)¢3/a. The relative  tonian,H o~ U,
contribution from the fluctuations in the variables has
doubled. This contribution is always attractive, so the free
energy of attraction is always more negative than for a pair-
wise additive potential. This is a general result for a weakly f dr¥[Hes(r™) = U(r™) Jexd — U (rM)/kT]
fluctuating scalar variable. Our result for the interaction be- ~ AA= 7 )
tween three particles may be compared with the more micro- hs (20)
scopic work on the interaction between three particles of
Lowen and co-workers. They considered triplet interactions
between charged colloidal particl¢s5] and between star whereZ, is the configurational integral fdd hard spheres.
polymers[16]. Substituting Eq(16) into Eq. (20),

When ¢o(r)>0 and ¢o(r) < ¢, (1) a<2¢y(r), the in-
teraction minus the part frotd is repulsive, i.e., greater than
zero, for a pair apart but attractive for a triplet at the cor-
ners of an equilateral triangle of sidelf U is some short-
range repulsion, e.g., a hard-sphere repulsion, which is zero
at some sufficiently large value of then it is possible for a
pair of our model colloidal particles to repel each other, but
for a triplet of them to attract. For other arrangements of
three particles the sign of the interaction free energy will _E(N_1)(N_2)3¢1(r12)¢1(r13)] 21
depend on the values of the three separations of the centers 6 2 '
of the particles and on the distance dependencepéand
¢,. However, this should not obscure the basic fact that the
interaction free energy of three particles can be negativdhe n-particle density of hard spheregf?, and their
when the interaction of two particles is positive. For four n-particle distribution functiorgﬁ”s) are defined af18]

AA= zgslf drNexp — U (rN)/kT]

1 rip?
x[EN(N—l)(qso(rlz)—%)
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n ¢4 simply for clarity; our conclusion that the integral of the
P (rm=|TT pf(ri) |ai2rm square is negligible holds for any long-range slowly decay-
=1 ing function.
So, in Eq.(24), we neglect the;ﬁ term, integrate over the
NT f exd — pU(rN)]drN-" remaining terms in Eq(24), and obtain
= . (22
(N=n)! Zhs (22 AA 1 1 (pvy)?
N2 . (29

The one-particle densitp{2(r) is not assumed to be uni-
form so that the theory applies to crystalline as well as fluidyhere », and v, are the integrals
phases. Using, Eq22) in Eq. (21), we obtain

1 r 2 wdl’q’)i(r):vi, |:0,1 (27)
AAZEJ drzpfwzs)(rlyrz)(ébo(rlz)_% fa

1 The pressure can be easily derived from the free energy,
__f d"3P§13)(r1 r2,r3)$1(r1) d1(rig). (23 Eq. (26),
4o sharer
1, 1 pgvi
As ¢, ¢, decay to zero only when the separations of the P=Phst 5P Vo~ 5 — —» (28)

particles are much larger than the integrals in Eq(23) are
dominated by configurations when the spheres are far apaijyherep, is the pressure of hard spheres. The contribution
i.e., where the pair separations are much larger tham a  from the fluctuations in thes variables to the pressure is
fluid the one-particle density is a constapt)=p, and at  cubic in the density as it must be; it is equivalent to a long-
separations large with respect ¢othe distribution function  range three-body attractida7]. The chemical potentiak is
is close to 1g{!=1. Thus in the fluid phase the integrands then simply given byu=A/N+p/p. The pressure and
of Eq. (23) can be simply approximated by?[ ¢o(r 1) chemical potential as functions of the temperature and den-
—$1(r1p)%Ra] and p3¢y(ri) ¢d1(ri9. In a crystalline sity allow us to calculate phase diagrams.
phase, although there are long-range correlatiomqﬁ';h the

one-patrticle density)&) averaged over a unit cell is jupt V. RESULTS
The attractive interaction between particles has a range much )
larger than the lattice constant of the lattige little larger The free energy, Eq26), depends on a single parameter,

thano) and so asp, and ¢, vary little across a unit cell we  the dimensionless ratiB= voao® v{. Rranges from- to

can regardp{2(r) as approximately constant at its averaget>; the sign ofRis determined by the sign of, asa must
value,p. Similarly, as we change any one of theposition ~ Pe positive. The larger the magnitude Rfthe more domi-
vectors upon which tha-body distribution functiorp%ns) de- hantis the part of the mteractlon_ potent_lal \_/vhlch doc_as _not
pends, the density oscillates rapidly over each unit cell bufi€Pend ors and so the closer the interaction is to a pairwise
averages t@. So in the crystalline phase as well as in the @dditive potential. In theR— —< limit the interaction is a

fluid phase we approximaig” by p". Then the integrands simple pairwise additive attractive potential. Then the free
are the same as in a fluid pﬁase We have energy is just a modification of the free energy of van der

Waals[18,21-23, the modification being the replacement of
1 " by(r)2 his approximate free energy of hard spheres by that of Car-
AAZ—VPZI dr( bo(r)— — ) nahan and Starlinf19] in the fluid and that of Hal[20] in
2 o 2a the crystal. In theR— + limit the potential is again pair-
1 . 2 wise additive but it is repulsive. A long-range repulsion
——Vpa(f dr¢1(r)> ) (24) tends to cause not bulk vapor-liquid separation but mi-
4a o crophase separation; see Rdf22,24. The R— =« limits
result from either the interaction between particles not de-
Now the term coming from the square @f is negligible if  pending on the value of thevariables,v;— 0, or the fluc-
¢, is long ranged. To see this consider an explicit functionakuations of thes variables tending to zeray— .

form for ¢,. We choose a Kac potential WhenR is finite then the interactions depend on the fluc-
tuations ins and are no longer pairwise additive. AR 0
d1(r)=eylexp — yrilo). (25  the interactions are attractive even in the absence of fluctua-

tions in s; the fluctuations irs merely make the attractions

The range of this function is/y; i.e.,y ! is arange in units  stronger and not pairwise additive. FB=>0 the pairwise

of o. Now the integral of Eq(25) over three-dimensional interactions are repulsive while the three-body interactions
space isO(ec®); essentially the integrand is of ordery®  from the fluctuations are, as always, attractive. The part of
within a volume of order ¢/v)3, and negligible outside of the free energy due to fluctuations, the last term in 26),

this volume. However, the integral of the square of Exh) is one power higher in the density than the part independent
over three-dimensional space (e?0>y%). For a long- of the fluctuations, the second in E@6). Thus, if v,>0,
range¢,, the inverse rangeg<1 and so the integral of the the interactions are always repulsive at sufficiently low den-
square is negligible. We chose a specific functional form forsities but become attractive, i.e., contribute a negative
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FIG. 1. The phase diagram of hard spheres plus a long-range FIG. 3. The phase diagram of hard spheres plus a long-range
pairwise additive attraction, a van der Waals fluid=0, v,<0 repulsion and a long-range attraction proportional to the fluctuating
and the reduced temperatuf®* =kTa?®/|vg|. The thick solid internal variables. R=0.5, and the reduced temperatufe
curves separate the one- and two-phase regions. The letters V, 5kTao% 3. The letters F and C denote the regions of the phase
and C denote the regions of the phase space occupied by the vapgpace occupied by the fluid and crystalline phases, respectively. The
liquid, and crystalline phases, respectively. The horizontal thin linesjotted curve is the bulk free energy prediction of a vapor-liquid-like
are tie lines connecting coexisting densities, and the dotted lingransition within the fluid-crystal coexistence region. See caption to
connects the three coexisting densities at the triple point. Fig. 1 for the meaning of the other curves and the horizontal lines.

amount to the free energy of the system, at a dens®tjo?.
We now discuss some example phase diagrams. The di

grams are in the density-temperature plane. We use the r

duced densityp=(7/6)po>, which is equal to the fraction

glternal variables, i.e., vo=0. There is vapor-liquid coexist-
gnce over a range of temperatures but this range is much
Smaller than for the simple pair potential of Fig. 1. The ratio

. f the temperature at the critical point to that at the triple
of the volume occupied by the hard cores, and a rEduceaoint is smaller in Fig. 2 than in Fig. 1. Also, the density at

temperaturd™ which is e|t_h_e|kTa3/|v0|_ orkTao®vi. For  the critical point is higher; it is almost double that in Fig. 1
reference we plot the familiar phase diagram of hard spheregng so the density range of the liquid phase is small. The
with a long-range attraction, often called the van der Waalsnteraction betweers variables is effectively a long-range
fluid [21-23, the R——c limit. This has a free energy three-body attraction, i.e., an attraction which is van der
given by Eqs(19) and(26) with ;=0 andyy<<0. The first  Waals like except for the fact that it is between triplets not
condition means that the internal variables on different parpair of particled17]. The phase diagram, Fig. 2, differs from
ticles do not couple and so the attraction is a simple paiFig. 2 of Ref.[17] only in that the temperature scale is dif-
potential and the second condition makes the long-range irferent.
teraction attractive so that there is a vapor-liquid transition, In Fig. 3 we show the phase diagram of particles vith
i.e., phase separation into two fluid phases of different den=0.5. There is no vapor-liquid coexistence at equilibrium,
sities. The phase diagram is shown in Fig. 1; there is a largenly a fluid-crystal coexistence region which broadens dra-
temperature range over which there is stable vapor-liquidnatically at low temperatures. The liquid phase has disap-
coexistence. This is, of course, not new; in the=0 limit peared. For other exam_ples of |IQUI.d pha}ses dls.appearllng see
our model reduces to the most basic model of particles whiclRef-[25]; the most studied system in which the liquid disap-
form a liquid. pears is that of particles with a short-range, pairwise additive
In Fig. 2 we show the phase diagram of particles vith ~ attraction[26—29. Within the fluid-crystal coexistence re-

—0. The long-range interaction is purely proportional to the9ion the pressure and chemical potential have van der Waals
loops, so our bulk free energy predicts vapor-liquid coexist-

ence within the fluid-crystal coexistence region. Note that the

0.08 density at the critical point is even higher than in Fig. 2.

0.07 | We have only considered fluid phases and crystalline
phases. However, sufficiently strong long-range repulsions

0.06 - can transform a bulk phase separation into a microphase

T Y separatiori22,24. Essentially, microphase separation occurs
0.05 | L when the interaction between particles is repulsive at the
\Y largest separations at which they interact separately and the

0.04 | e e repulsion is sufficiently strong and long ranged. Thus our
present theory, which neglects the possibility of microphase

0.03 \ separation, should not be used if the long-range interaction is

0.0 01 02 03 04 05 06 07 predominantly repulsive, i.e., ip>0, and either¢, is
n longer ranged thag,, or R>1.

FIG. 2. The phase diagram of hard spheres plus a long-range
interaction proportional to the fluctuating internal varialslev,
=0, and the reduced temperatufé=kTao%/v5. See caption to We have shown that the phase behavior of our particles
Fig. 1 for the meaning of the letters, curves, and horizontal lines. can be very different from that of a simple pair potential but

Structure of the fluid phase
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what about the structure? Of course the pair distribution
function or equivalently the structure factdr8] depends on
the functional form of the interactions, i.e., on the precise
forms of the functionspy(r) and ¢(r). However, we have
only considered long-range interactions and there the bulk
phase behavior is insensitive to the precise detailgJ{f)

and ¢,(r); it only depends on their integralg, and v;.
Also, long-range interactions only affect the structure factor
S(q) at small wave vectorg, small meaning of order of the
reciprocal of their range or less. Thus, we will consider only
the zero-wave-vector limi§(0) of the structure factor. This

is simply related to a thermodynamic quantity, the isothermal
compressibilityy, by [18]

B FIG. 4. The zero-wave-vector structure factor of our particles in
S(0)=pkTxr, (29) the fluid phaseS(0), as afunction of the volume fractiom;. The
solid curve is for an attraction which does not dependspthe

where potential with the phase diagram of Fig. ig/(okT)=—10,
ap which is just above the critical temperature. The dashed curve is for
X;1: (-) . (30 an attraction which is proportional to the fluctuating internal vari-
ap T able s, the potential with the phase diagram of Fig. 2.
. vf/(aGkTa) =19.4, which is again just above the critical tempera-
Using Eq.(28) for the pressure, ture.
3 2
XT1:p<aphs) +p2vo— 3p L (31)  tween the curves is their opposite slopes at low densities.
ap |1 2 a The limiting slope at vanishing densities is equal to

—2B,, Eq.(32). For a van der Waals fluid the second virial
coefficient is negative at the critical temperature, so the slope
of S(0) is positive until above the critical density. However,
interactions between fluctuations do not contribute to the
%econd virial coefficient and so it is equal to that of hard
spheres which is positive. Thus the slopeSp0) is negative
at low densities an®(0) goes through a minimum below the
critical density.

Equations(29) and(31) give us the zero-wave-vector struc-
ture factor of our particles. Below we will consider the den-
sity dependence &(0). It will therefore be useful to obtain
S(0) as a density expansion. To do this we start by insertin
the virial expansion for the pressure into the definition of the,
isothermal compressibilityt, Eq. (30). Inserting this ex-
pansion into Eq(29) for S(0) yields

S(0)=1-2B,p+0(p?); (32

the initial slope ofS(0) is equal to minus twice the second VI CONCLUSION

virial coefficientB,. For our particles, Particles which have a fluctuating internal state interact in
a way which is different from structureless particles. The

B :Eqwng 1 v (33) interaction is intrinsically many body and cannot be de-

273 2 kT’ scribed using a pair potential. It is even possible for pairs of

particles with a fluctuating state to repel but larger clusters of

where the first term on the right hand side is the second viriabarticles to attract each other. We have studied a rather ge-
coefficient of hard spheres. Note that the fluctuations irsthe neric model of a particle with a fluctuating state. Remark-
variables do not contribute to the second virial coefficient.ably, because of the very simple form of our Hamiltonian’s
This is only the case in the long-range interaction limit. In dependence on the variables which describe the states of the
Sec. lll and in Eq(24) we found that in general the fluctua- particles[see Eq.(10)], we have been able to integrate over
tions did contribute to the interaction between pairs anthese variables exactly and analytically. The result is an in-
hence to the second virial coefficient but that this contributeraction between the particles which has both pair and trip-
tion was weaker than its contribution to the interaction be-et interactions, Eq(16). Our model only included the lead-
tween larger numbers of particles and to the third virial co-ing order terms in Taylor expansions for the free energy
efficient. The term in the free energy per unit volume associated with the internal states of the particles. It is pos-
proportional tOvl/a which comes from the fluctuations var- sible to include higher order terms although then sheari-
ies with density ap> and so it contributegonly) to the third  ables will have to integrated over approximately or numeri-
virial coefficient. cally; alternatively computer simulation could be used. In

In Fig. 4 we have plotted the zero-wave-vector structureany case the effective potential will then contain not only
factor for a van der Waals fluithard spheres plus a long- pair and triplet terms but terms of all orders, four-body, five-
range pairwise additive attractipfthe solid curvg and for  body, etc.
an attraction which is proportional ® (the dashed curye It is perhaps of interest to contrast the particles with me-
They are both at temperatures just above the critical temperaoscopic fluctuations studied here to the rods with micro-
ture. The peaks iB(0) are due to the nearby critical points, scopic fluctuations studied by Ha and LLR0O]; see also Refs.
whereS(0) diverges, of course. The striking difference be-[31-33. They studied the interactions between parallel rods
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and allowed the charge density along each rod to fluctuate; the set of all variables byN*M and the two subsets y"
a rod is along thez axis then we can define a one- andv, then the configurational integral is
dimensional charge densip/(z), which will fluctuate. The
Coulomb interaction between charges will then couple the
fluctuations inp(z) in nearby rods. Ha and Liu found that
not only can this coupling generate an attraction but that it is
strongly nonpairwise additive. In contrast with their model :f doNex —H' (vN)/KT], (A1)
our is rather general and simpler. The results for our rather
nonspecific model show clearly that these findings of Ha and
Liu are rather generic. The disadvantage of our model wit'nere
respect to that of Ha and Liu is that to relate it to experiment
requires determining or at least guessing the appropriate val-  exg —H f(vN)/kT]zj doMex —H(oN*M)/KT].
ues of the parameters of our phenomenological interaction.

We hope that our model will be useful for determining

generic_ diﬁgrence; in the .behavior b_etween rigid partic_le§_|, will not in general be expressible as a sum over a pair
interacting via a pair potential and particles with a fluctuating otential even ifH can be. Physically, this is most often
state. For example, although all our calculations have beeﬁseful when the two sets o.f coordinaté‘é ando™ are very

Io:eas S\'/T/%lfnct?]rgpgnfg;’ethteysarteraeaﬁt'flﬁn?vzrr]gﬂ'zseei E[?];?')Fpifferent. We consider a model in which the set of coordi-
tﬁe flluctuationsI bletween’ {h:a isnterlgal states of articles' (')?atesv'\" Is coarse grainefll2]; i.e., the integration over™

. particles Ok 1eft as a function of a set of coarse-grained variables, so
different components are only weakly coupled, then this will,

; ) instead of Eq(A2) we have

tend to drive phase separation of these components. How-
ever, differences between the inverse susceptibiligannot exd —H'(vN,c4)/KT]
drive phase separation. At least within our theory which in- ’

cludes only leading order terms.

zzf doN*"Mexg —H(NTM)/KT]

(A2)

L
:f deexq—H(vMM)/kT]Hl S(ca(v™—cy),
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Y. Levin, R. van Roij, and P. B. Warren. wherec” is a set ofL <M coarse-grained variables, is the
ath coarse-grained variable ang(v") is the definition of
APPENDIX the ath coarse-grained variable in terms of the microscopic

coordinatess™. The configurational integral is then

Rather generally, when we are evaluating a configura-
tional integral, with the aim of calculating the free energy,
we can split the variables over which we are integrating into
two sets. Then integrating over one set is always possible in
principle, and it results in an effective Hamiltonian which is Our model has a configurational integral, E¢1), of this
a function only of the remaining set of variables. However,form, with L=N as there is one coarse-grained variable per
this effective Hamiltonian is not in general pairwise additive, particle. Thev™ andcN coordinates are the positions aad
simply because there is no reason for it to be. If we denot&ariables of the particles.

z:f doNdctexg —H' (vN,ch)/kT]. (A4)
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